POWER and ENERGY are *different* things

POWER	ENERGY
How <i>fast</i> the energy is used	How fast the energy was being used <i>multiplied by</i>
	how long it was being used for!
Imagine the drops falling from a dripping tap, or	Imagine a bucket that has been sitting under a
instead from a fully-on hose.	dripping tap for many hours, or instead under a
How fast the drops (of energy) are dripping is the	fully-on hose for a minute or so. The bucket is
<i>rate</i> of energy transfer ie Power. The fully-on	filled up the same amount at the end of the times
hose represents a more <i>powerful</i> flow than the	and this represents the total energy transferred-
drips	even though this same amount of energy was
	transferred at different speeds
Watts, KiloWatts,	WattHours, KiloWattHours, MegaWattHours
Joule/second, MegaJoules/Hour	Joules, MegaJoules, UNITS
If the electricity or gas meter spins fast, then the	Each time the wheel on the meter spins it is
rate of energy transfer is fast, so the POWER	counting a "drop" of energy
consumption is high (and so will be total energy	Each time the light flashes on the meter it is
used if they do it for a long time)	counting a "drop" of energy
The <i>rate</i> of energy transfer	Energy is the <i>product</i> of the <i>rate</i> of energy transfer
(Specifically: 1 Watt is a rate of energy transfer	(ie Power) and <i>time</i>
of 1 Joule/second) (Power already has an	
implicit time factor)	Ie: Watts MULTIPLIED by Hours

• A kilowatt is 1000 Watts, just like a kilogram is 1000 grams, or a kilometre is 1000 metres.

Eg: My toaster has a label which says it is 1000 Watts (ie. its POWER is 1000 Watts, or 1kiloWatt), and I have it turned on for 15 minutes (= 0.25 hours)

(to convert to KiloWattHours divide by 1000) =0.25 kWh (this would add an extra 0.25 Units to my bill)

The toaster will have used 0.25 kWh of ENERGY after 15 minutes but when it is on it uses 1000 Watts of POWER